
## MEGA MESH®

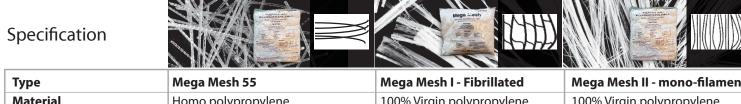
Polypropylene Fibre





Mechanism of Mega Mesh - Concrete interaction How Mega Mesh fibres stop plastic shrinkage cracking Removal of the bleed water in concrete basically cause plastic shrinkage cracking. As the bleed water moves to the surface of the concrete tiny capillary channels develop as microscopic cracks in the concrete. Additional microscopic cracks develop and soon they meet, join, and develop into large macro-cracks. Similar cracks are being formed throughout the concrete and eventually these macro-cracks will grow together into distinct shrinkage cracks.

When the tiny macro-crack is intersected by a fibre it is prevented from further growth, and remains in its initial small size. Somewhere adjacent to the first crack another macro-crack develops and is also prevented from becoming larger when it meets a fibre. In this way the tiny macro-cracks are not allowed to develop into harmful cracks which would reduce the quality of the concrete.


## **Practical Advantages**

- No UNLOAD & HANDLING PROBLEM machinery, labor
- No EXTERNAL STORAGE corrode, wide area, security
- No REINFORCEMENT PLACEMENT MISTAKE layer, size, lapping
- No PROBLEM WHEN DISCHARGE CONCRETE compaction, deformation, machinery

| Fibre Type                   | MEGA MESH     |             |
|------------------------------|---------------|-------------|
| Cause                        | Polypropylene | STAHLCON    |
|                              |               |             |
| Cracking in Concrete         | Fibre         | Steel Fibre |
| Reduced Plastic Shrinkage    | BEST          |             |
| Reduced Plastic Settlement   | BEST          |             |
| Reduced Segregation          | BEST          |             |
| Improved Hydration           | BEST          |             |
| Maximum Toughness Index      | BEST          |             |
| Fire Resistance              | BEST          | BEST        |
| Permeability                 | BEST          | BEST        |
| Corrosion Resistance         | BEST          | BEST        |
| Greater Ductility            |               | BEST        |
| Flexural Toughness           |               | BEST        |
| Post-Crack residual strength |               | BEST        |
| Crack width control          |               | BEST        |
| Fatigue Improvement          |               | BEST        |
| Impact Resistance            |               | BEST        |
| Abrasion Resistance          |               | BEST        |
| Long Term Shrinkage          |               | BEST        |
| Freeze-Thaw Damage           |               | BEST        |
| Tensile Load                 |               | BEST        |
| Load Bearing Capacity        |               | BEST        |
| Additional Durability        |               | BEST        |

## **Standard Compliances**

- Conforms to BS EN 14889-2:2006



| Туре                                    | Mega Mesh 55                                                             | Mega Mesh I - Fibrillated                           | Mega Mesh II - mono-filament                       |
|-----------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------|
| Material                                | Homo polypropylene<br>(Macro Synthetic Fibre)                            | 100% Virgin polypropylene                           | 100% Virgin polypropylene                          |
| Color                                   | White                                                                    | White                                               | White                                              |
| Length                                  | 55mm                                                                     | 19 mm                                               | 12 mm                                              |
| Mass (Denier)                           | 4780 denier                                                              | 1 g/9m (1000 denier)                                | 15 denier                                          |
| Specific Gravity                        | 0.90 kg/dm <sup>3</sup>                                                  | 0.90 kg/dm <sup>3</sup>                             | 0.90 kg/dm³                                        |
| Aspect Ratio                            | 65-70                                                                    | Nil                                                 | Nil                                                |
| E-modulus                               | 7,288 N/mm²                                                              | 3,900 N/mm <sup>2</sup>                             | 3,500 N/mm <sup>2</sup>                            |
| Tensile Strength                        | 425 N/mm²                                                                | 400 N/mm²                                           | 400 N/mm²                                          |
| Tensile at Break                        | 45N per 1000 denier                                                      | 35N per 1000 denier                                 | 35N per 1000 denier                                |
| Elongation at Break                     | 15% (Average)                                                            | 15% (Average)                                       | 15% (Average)                                      |
| Chemical Composition                    | C-33%, H-67%                                                             | C-33%, H-67%                                        | C-33%, H-67%                                       |
| Melting Point                           | 160-170 °C                                                               | 160 - 170°C                                         | 160 - 170°C                                        |
| Ignition Point                          | 350°C                                                                    | 590°C                                               | 590°C                                              |
| Thermal Conductivity                    | Low                                                                      | Low                                                 | Low                                                |
| <b>Electrical Conductivity</b>          | Low                                                                      | Low                                                 | Low                                                |
| Acid and Alkaline Resistance            | Superb                                                                   | High                                                | High                                               |
| Dosage for 1m <sup>3</sup> of concrete: | $1 \text{ bag} = 1 \text{ kg/m}^3 - 9 \text{ kg/m}^3 \text{ (concrete)}$ | 1 bag = 0.9 kg/m <sup>3</sup>                       | 1 bag = $0.6 \text{ kg/m}^3$                       |
| -                                       |                                                                          | (concrete & mortar)                                 | (concrete & mortar)                                |
| Advantages                              | Alkali resistant, non-corrosive, cost                                    | Reduce plastic settlement                           | Reduce plastic settlement                          |
|                                         | effective, higher quality of concrete,                                   | plastic shrinkage cracking                          | plastic shrinkage cracking                         |
|                                         | excellent in flexural toughness,                                         | and permeability of concrete,                       | and permeability of concrete                       |
|                                         | excellent in premature cracking,                                         | increase impact and abrasion                        |                                                    |
|                                         | and easy to handle and use.                                              | resistance                                          |                                                    |
| Application                             | -Floor slabs                                                             | -Floor slabs                                        | -Wall plastering                                   |
|                                         | -Toppings and Overlays                                                   | -Toppings and Overlays                              | -Toppings and Overlays                             |
|                                         | -Concrete Pipe<br>-Concrete Driveways                                    | -Concrete Pipe                                      | -Screeding for RC roof<br>-Secondary reinforcement |
|                                         | -Pre-cast Concrete and Sections                                          | -Concrete Driveways -Pre-cast Concrete and Sections | -Pre-cast Concrete and Sections                    |
|                                         | -Median Barriers                                                         | -Median Barriers                                    | -Median Barriers                                   |
|                                         | -Shotcrete Applications                                                  | -Shotcrete Applications                             | -Shotcrete Applications                            |
|                                         | -Patching                                                                | -Patching                                           | -Patching                                          |
|                                         | -Bridge Decks                                                            | -Bridge Decks                                       | -Bridge Decks                                      |
|                                         | -Sidewalks                                                               | -Sidewalks                                          | -Sidewalks                                         |
|                                         | -Water Reservoirs                                                        | -Water Reservoirs                                   | -Water Reservoirs                                  |

<sup>\*</sup>Data given is liable to change and is given without obligation



Concrete Pipe

Swimming Pool



7.5



Ramps

Enhance Edge Protection



Water Tanks



Concrete Driveways